ijis533@cornell.edu
www.jenjsun.com

Jennifer J. Sun

Appointments

Cornell University, Ithaca, NY.

08/2024

Assistant Professor

Department of Computer Science

Google DeepMind, Los Angeles, CA.

08/2023-present

Research Scientist

Education

California Institute of Technology, Pasadena, CA. 09/2017–09/2023

Doctor of Philosophy in Computing and Mathematical Sciences

Advisors: Pietro Perona, Yisong Yue

University of Toronto, Toronto, Canada.

09/2012-06/2017

Bachelor of Science in Engineering Science (Electrical and Computer Engineering) Minor in Robotics and Mechatronics

Research Interests

My research centers on developing general expert-in-the-loop frameworks to accelerate scientific discovery. I build machine learning and computer vision methods that learn from both symbolic domain knowledge and experimental data. I collaborate closely with scientists across domains, such as behavioral neuroscientists and medical doctors, to integrate my methods in practice.

Honors and Awards

Ben P.C. Chou Doctoral Prize (Caltech).	2023
Rising Star in EECS (University of Texas at Austin).	2022
Caltech Chen Institute Diversity and Inclusion Award.	2022
Amazon Al4Science Fellowship.	2022
Rising Star in Data Science (University of Chicago).	2021
Best Student Paper Award, Conference on Computer Vision and Pattern Recognition (CVPR).	2021
Natural Sciences and Engineering Research Council of Canada (NSERC) Postgraduate Scholarships.	2019
Caltech Kortschak Scholar Program.	2017
University of Toronto W. S. Wilson Medal for top graduating student in engineering science	2017

Publications

(* denotes equal contribution)

Peer-Reviewed Conference and Journal Publications

- L. Zhao, N. B. Gundavarapu, L. Yuan, H. Zhou, S. Yan, **J. J. Sun**, L. Friedman, R. Qian, T. Weyand, Y. Zhao, R. Hornung, F. Schroff, M. Yang, D. A. Ross, H. Wang, H. Adam, M. Sirotenko, T. Liu, B. Gong, VideoPrism: A foundational visual encoder for video understanding. *International Conference on Machine Learning (ICML)*. 2024.
- A. Sehgal, A. Grayeli, **J. J. Sun**, S. Chaudhuri, Cosmos: Neurosymbolic Grounding for Compositional World Models. *International Conference on Learning Representations (ICLR)*. 2024.
- **J. J. Sun***, M. Marks*, A. Ulmer, D. Chakraborty, B. Geuther, E. Hayes, H. Jia, V. Kumar, S. Oleszko, Z. Partridge, M. Peelman, A. Robie, C. E. Schretter, K. Sheppard, C. Sun, P. Uttarwar, J. M. Wagner, E. Werner, J. Parker, P. Perona, Y. Yue, K, Branson, A. Kennedy. MABe22: A Multi-Species Multi-Task Benchmark for Learned Representations of Behavior. *International Conference on Machine Learning (ICML)*. 2023.
- **J. J. Sun***, P. Karashchuk*, A. Dravid*, S. Ryou, S. Fereidooni, J. Tuthill, A. Katsaggelos, B. Brunton, G. Gkioxari, A. Kennedy, Y. Yue, P. Perona. Self-Supervised 3D Keypoint Discovery in Multi-View Videos. *In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR*). 2023.
- K. Luxem*, **J. J. Sun***, S. P. Bradley, K. Krishnan, T. D. Pereira, E. A. Yttri, J. Zimmermann, M. Laubach, Open-Source Tools for Behavioral Video Analysis: Setup, Methods, and Development. *eLife*. 2023.
- E. Zhan*, **J. J. Sun***, A. Kennedy, Y. Yue, S. Chaudhuri. Unsupervised Learning of Neurosymbolic Encoders. *Transactions on Machine Learning Research* (*TMLR*). 2022.
- **J. J. Sun***, S. Ryou*, R. Goldshmid, B. Weissbourd, J. Dabiri, D. J. Anderson, A. Kennedy, Y. Yue, P. Perona. Self-Supervised Keypoint Discovery in Behavioral Videos. *In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*. 2022.
- A. Tseng, **J. J. Sun**, Y. Yue. Automatic Synthesis of Diverse Weak Supervision Sources for Behavior Analysis. *In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*. 2022.
- **J. J. Sun**, T. Karigo, D. Chakraborty, S. P. Mohanty, B. Wild, Q. Sun, C. Chen, D. J. Anderson, P. Perona, Y. Yue, A. Kennedy. The Multi-Agent Behavior Dataset: Mouse Dyadic Social Interactions. *In Neural Information Processing Systems (NeurIPS)*, Datasets and Benchmarks Track. 2021.

- **J. J. Sun**, A. Kennedy, E. Zhan, D. J. Anderson, Y. Yue, P. Perona. Task Programming: Learning Data Efficient Behavior Representations. *In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*. 2021. **(Oral) Best Student Paper Award.**
- L. Zhao, Y. Wang, J. Zhao, L. Yuan, **J. J. Sun**, F. Schroff, H. Adam, X. Peng, D. Metaxas, T. Liu. Learning View-Disentangled Human Pose Representation by Contrastive Cross-View Mutual Information Maximization. *In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*. 2021. **(Oral)**
- T. Liu*, **J. J. Sun***, L. Zhao, J. Zhao, L. Yuan, Y. Wang, L.C. Chen, F. Schroff, H. Adam. View-Invariant, Occlusion-Robust Probabilistic Embedding for Human Pose. *International Journal of Computer Vision (IJCV)*. 2021.
- C. Segalin, J. Williams, T. Karigo, M. Hui, M. Zelikowsky, **J. J. Sun**, P. Perona, D. J. Anderson, A. Kennedy. The Mouse Action Recognition System (MARS): a software pipeline for automated analysis of social behaviors in mice. *eLife*. 2021.
- A. Shah*, E. Zhan*, **J. J. Sun**, A. Verma, Y. Yue, S. Chaudhuri. Learning Differentiable Programs with Admissible Neural Heuristics. *In Neural Information Processing Systems (NeurIPS)*. 2020.
- **J. J. Sun**, J. Zhao, L.C. Chen, F. Schroff, H. Adam, T. Liu. View-Invariant Probabilistic Embedding for Human Pose. *In Proceedings of the European Conference on Computer Vision (ECCV)*. 2020. **(Spotlight)**

Peer-Reviewed Workshop Publications

- J. Flashner, **J. J. Sun**, D. Ouyang, Y. Yue. Learning Expert-Interpretable Programs for Myocardial Infarction Localization. *AI for Science Workshop at NeurIPS*. 2023.
- **J. J. Sun***, M. Tjandrasuwita*, A. Sehgal*, A. Solar-Lezama, S. Chaudhuri, Y. Yue, O. Costilla-Reyes. Neurosymbolic Programming for Science. *Al for Science Workshop at NeurIPS*. 2022.
- S. Talukder*, J. J. Sun*, M. Leonard, B. Brunton, Y. Yue. Deep Neural Imputation: A Framework for Recovering Incomplete Brain Recordings. *Learning from Time Series for Health Workshop at NeurIPS*. 2022.
- M. Tjandrasuwita, **J. J. Sun**, A. Kennedy, S. Chaudhuri, Y. Yue. Interpreting Expert Annotation Differences in Animal Behavior. *CV4Animals Workshop at CVPR*. 2021.
- **J. J. Sun**, T. Liu, G. Prasad. GLA in MediaEval 2018 Emotional Impact of Movies Task. *MediaEval Workshop.* 2018.

Patents

- J. Lam, A. Huda, **J. J. Sun**, Image processing method for generating training data. US Patent Number: US10672143B2.
- A. M. Rotenstein, A. Bachoo, C. Sutanto, **J. J. Sun**, A. Kelman, Three-dimensional detection and tracking pipeline recommendation using performance prediction. US Patent Number: US20200105001A1

Invited Talks & | Unifying AI Approaches towards Human and Animal Well-being

- Panels | O Symposium on Artificial Intelligence in Veterinary Medicine, 2024
 - o CV4Animal workshop at CVPR, 2024

Al for Scientists: Perception & Discovery

o JAX Short Course on Application of Machine Learning for Automated Quantification of Behavior, 2023

The Role of Perception in Simulated Bodies

o Simulated Bodies: Whole Body Biomechanical Models Conference, 2023

Self-Supervised Learning for Behavioral Neuroscience

o CAJAL Training Course on Machine Learning in Neuroscience, 2023

Al for Scientists: Accelerating Discovery through Knowledge, Data & Learning

- o Cornell University Computer Science Seminar, 2023
- o Cornell Tech Seminar, 2023
- o Microsoft Research Machine Learning Seminar, 2023
- o University of Waterloo Computer Science Seminar, 2023
- o MIT EECS / Broad Institute Seminar, 2023
- o UCSD Cognitive Science Seminar, 2023
- o Emory University Computer Science Seminar, 2023
- o Georgia Tech Computational Science and Engineering Seminar, 2023
- o UCI Computer Science Seminar, 2023
- o UCSB Computer Science Seminar, 2023
- Duke Biostatics and Bioinformatics Seminar, 2023
- o Rice Computer Science Seminar, 2023
- University of Toronto Computer Science Seminar, 2023
- o Symposium on Frontiers of ML and AI at USC, 2022
- o UCSD Halicioğlu Data Science Institute Seminar, 2022
- o Rising Stars in EECS at UT Austin, 2022
- o Neurosym Webinar Series at MIT, 2022
- o ML Reading Group at the University of Arizona, 2022
- o Al4Life Group at Harvard, 2022

Al for Science: Learning from Experts and Data

- o Janelia Computing and Theory Seminar, 2022
- o Rising Stars in Data Science at UChicago, 2021
- o Vision & ML groups at UChicago/TTIC, 2021
- o Cognitive Science Talk Series at MIT, 2021

Perception and Modeling of Human and Animal Behavior

o Disney Research, 2022

Machine Learning for Behavior: Methods and Datasets

- o Chicago Sensorimotor Consortium, 2022
- o Caltech Chen Building Seminar Series, 2022

Measuring Social Behavior from Video and Trajectory Data of Interacting Animals

Automatic Behavior Recognition in Rodents Symposium at Measuring Behavior Conference, 2022

Behavior Quantification: Pose to Actions

o Behavior Quantification Symposium at the 8th Annual BRAIN Meeting, 2022

Neurosymbolic Programming Tutorial Series

o Summer school on Neurosymbolic Programming, 2022

Deep Learning Careers in Academia

o Neuromatch Professional Development Session Panel, 2022

Academic Services

Workshop & Tutorial Organization

The 3rd Workshop on Multi-Agent Behavior: Properties, Computation, and Emergence (MABe). Workshop at CVPR 2023. Workshop Co-organizer

Neurosymbolic Programming. Tutorial at NeurIPS 2022. Co-organizer

The 2nd Workshop on Multi-Agent Behavior: Representation, Modeling, Measurement, and Applications (MABe). Workshop at CVPR 2022. Workshop and Competition Co-organizer

The 1st Workshop on Multi-Agent Behavior: Representation, Modeling, Measurement, and Applications (MABe). Workshop at CVPR 2021. Workshop and Competition Co-organizer

The 1st Workshop on Affective Understanding in Video (AUVi). Workshop at CVPR 2021.

Workshop and Competition Co-organizer

Area Chair

ICLR 2024

Reviewing

ICLR (highlighted reviewer in 2022)

NeurIPS

NeurIPS Datasets and Benchmarks

CVPR

ICML

ECCV

Artificial Intelligence Journal

IEEE Transactions on Geoscience and Remote Sensing

Nature Communications

International Journal of Computer Vision

Teaching Experience

Summer School on Machine Learning in Neuroscience, 07/2023–07/2023 *Instructor*.

Designed a lecture and hands-on notebook for unsupervised and self-supervised learning for a group of students at the CAJAL Machine Learning in Neuroscience course.

Summer School on Neurosymbolic Programming, 07/2022–07/2022 *Co-Instructor*.

Designed a tutorial on neurosymbolic programming for behavior analysis and led handson exercises for a group of graduate students in computer science.

Caltech CS159 Representation Learning for Science, 03/2022–06/2022 Head Teaching Assistant.

Co-designed a machine learning course with a focus on representation learning in real-world scientific applications, and mentored multiple student projects end-to-end.

Computing and Mathematical Sciences Department, **09/2019–06/2021** *Teaching Fellow.*

Mentored teaching assistants (TAs) in the department on effective and inclusive teaching, managed feedback between department and TAs, and designed teaching workshops.

Caltech CMS144 Networks: Structures and Economics, 01/2019–04/2019 Head Teaching Assistant.

Coordinated a group of teaching assistants to support students in the course, designed assignments, and hosted office hours.

Computing and Mathematical Sciences Department, 09/2018–04/2019 Preliminary Exam Prep Lead.

Mentored students on the preliminary exam process at Caltech and organized practice problems and discussions.

Professional Experience

Google DeepMind, Venice, CA.

Research Scientist

Developing methods for video understanding.

Google Research, Venice, CA.

06/2019-12/2019

08/2023-present

Mobile Vision Team, Research Intern

Developed a method for view-invariant probabilistic embedding of 2D poses (ECCV 2020 Spotlight)

Google Research, Venice, CA.

06/2018-09/2018

Mobile Vision Team, Research Intern

Built a dataset and model for affective video analysis (led to the Affective Understanding in Video workshop at CVPR 2021)

University of Toronto, Toronto, Canada.

09/2016-04/2017

Institute for Aerospace Studies, Undergraduate Thesis Student

Studied and developed methods to enable human-robot shared control of a mobile manipulator (mentor: Prof. Jonathan Kelly, STARS Lab).

Epson Research and Development, *Markham, Canada*. **05/2015–08/2016**Robotics and AR Teams, Algorithm Research Intern

Developed algorithm prototypes for integration into augmented reality systems (led to two US patents).

ETH Zurich, Zurich, Switzerland.

05/2014-08/2014

Institute for Dynamic Systems and Control, Summer Research Student Worked on time-of-flight based localization algorithms for ultra-wideband radios.

University of Hamburg, Hamburg, Germany.

05/2013-08/2013

Center for Free-Electron Laser Science, Summer Research Student Profiled laser-generated plumes on water using interferometry.